ICS C250: OBJECT-ORIENTED
PROGRAMMING

Item Value

Curriculum Committee Approval 11/17/2023

Date

Top Code 070700 - Computer Software
Development

Units 3 Total Units

Hours 72 Total Hours (Lecture Hours
54; Lab Hours 18)

Total Outside of Class Hours 0

Course Credit Status Credit: Degree Applicable (D)

Material Fee No

Basic Skills Not Basic Skills (N)

Repeatable No

Standard Letter (S),
+ Pass/No Pass (B)

Grading Policy

Course Description

This course serves as an introduction to the fundamental principles

and practices of object-oriented programming (OOP). Object-oriented
programming is a key paradigm in software development, and this course
provides students with the knowledge and skills to design, implement,
and maintain software using OOP concepts. Students will learn to create
classes, objects, and methods, and apply encapsulation, inheritance,
and polymorphism to solve real-world programming problems. Hands-
on coding exercises and projects will reinforce the theoretical concepts
taught in the course. ADVISORY: ICS C120 and ICS C123. Transfer Credit:
CSu.

Course Level Student Learning Outcome(s)
1. Create classes and objects in an object-oriented programming
language.
2. Write programming code to implement encapsulation, inheritance,
and polymorphism to model real-world entities and relationships.

3. Analyze and refactor given source code to improve software
maintainability and readability.

Course Objectives

+ 1. Describe the core principles and concepts of object-oriented
programming.

2. Provide examples on how to create classes and objects in an
object-oriented programming language.

3. Explain how to implement encapsulation, inheritance, and
polymorphism to model real-world entities and relationships.

4. Provide real-world examples of methods to develop software
applications using object-oriented design principles.

5. Show examples of how to analyze and refactor code to improve
software maintainability and readability.

6. Explain the use of design patterns to solve common software
design problems.

7. Provide methods and techniques to effectively debug and test
object-oriented code.

ICS C250: Object-Oriented Programming 1

+ 8. Facilitate collaboration with peers to design and implement object-
oriented projects.

Lecture Content

Introduction to Object-Oriented Programming (OOP) Overview of OOP and
its significance in software development. OOP principles and terminology.
Classes and Objects Creating classes and objects in an object-oriented
language. Constructors and destructors. Encapsulation Access control
and data hiding. Getters and setters for data protection. Inheritance
Extending classes and inheriting attributes and methods. Method
overriding and base classes. Polymorphism Polymorphic behavior and
method overloading. Interfaces and abstract classes. Object-Oriented
Design Principles SOLID principles (Single Responsibility, Open-Closed,
Liskov Substitution, Interface Segregation, Dependency Inversion). The
importance of modularity and design patterns. Exception Handling
Handling exceptions in object-oriented code. Try-catch blocks and
custom exception classes. Unit Testing in OOP Writing unit tests for
object-oriented code. Test-driven development (TDD). Object-Oriented
Programming Language Features Language-specific features in popular
OOP languages (e.g., Java, C++, Python, C#). Design Patterns Common
design patterns (e.g., Singleton, Factory, Observer) and their applications.
Object-Oriented Software Development Applying OOP principles to design
and develop complete software applications. Collaborative group projects
that apply OOP concepts to solve real-world problems.

Lab Content

Creating Classes and Objects: Write a Python program that defines a
class with attributes and methods, and create instances (objects) of
that class. Encapsulation and Access Control: Create a Python class
with private attributes and use getter and setter methods to access and
modify those attributes. Inheritance and Method Overriding: Define a
base class and a derived class that inherits from the base class. Override
methods in the derived class. Polymorphism and Duck Typing: Create
multiple classes that implement a common interface, and demonstrate
polymorphic behavior using these classes. Class Composition and
Aggregation: Define classes that have relationships with other classes
through composition and aggregation. Abstract Classes and Interfaces:
Create an abstract class (using the abc module) and implement concrete
classes that inherit from it. Exception Handling in OOP. Write Python
classes that raise and handle exceptions, demonstrating how exception
handling can be used in OOP. File I/0 and Serialization: Create classes
that handle file 1/0 and data serialization (e.g., JSON or Pickle) in Python.

Method(s) of Instruction
+ Lecture (02)
+ DE Live Online Lecture (02S)
+ DE Online Lecture (02X)
+ Lab (04)
+ DE Live Online Lab (04S)
+ DE Online Lab (04X)

Instructional Techniques

This course will utilize a combination of lecture, remote virtual machine
assignments, classroom/discussion student interactions, problem-
solving, quizzes, tests, and troubleshooting assignments to achieve
the goals and objectives of this course. All instructional methods are
consistent across all modalities.



2 ICS C250: Object-Oriented Programming

Reading Assignments

Students will be asked to read and review academic concepts in the
textbook and other materials while experiencing how working code
behaves under different conditions. Thus, practical programming
techniques are taught through personal understanding, hands-on
discovery, active learning, and discussing concepts and their results with
others.

Writing Assignments

Written assignments will focus on demonstrations of programming skills.
Written assignments will include opportunities to compare and contrast
code with student examples and real-world examples.

Out-of-class Assignments

The problem-solving exercises will include analysis of programming
language for common coding practices. Programming demonstrations
are included in the hands-on projects.

Demonstration of Critical Thinking

Students will be asked to read and review academic concepts in the
textbook while experiencing how working code behaves under different
conditions. Thus, practical programming techniques are taught through
personal understanding, hands-on discovery, active learning, and
discussing concepts and their results with others.

Required Writing, Problem Solving, Skills Demonstration

The problem-solving exercises will include programming language
analysis and comparisons.Programming skills demonstrations are
included in the Projects, Midterm and Final examinations.

Eligible Disciplines

Computer information systems (computer network installation,
microcomputer ...: Any bachelors degree and two years of professional
experience, or any associate degree and six years of professional
experience. Computer science: Masters degree in computer science or
computer engineering OR bachelors degree in either of the above AND
masters degree in mathematics, cybernetics, business administration,
accounting or engineering OR bachelors degree in engineering AND
masters degree in cybernetics, engineering mathematics, or business
administration OR bachelors degree in mathematics AND masters degree
in cybernetics, engineering mathematics, or business administration
OR bachelors degree in any of the above AND a masters degree in
information science, computer information systems, or information
systems OR the equivalent. Note: Courses in the use of computer
programs for application to a particular discipline may be classified,
for the minimum qualification purposes, under the discipline of the
application. Masters degree required.

Textbooks Resources

1. Required Lott, S.; Phillips, D.. Python Object-Oriented Programming, 4th
ed. Packt Publishing, 2021

Other Resources

1. Technology related white papers and articles are available at no charge
to all students at multiple sites as recommended by the instructor. 2.
Coastline Library



