
ICS C230: Secure Coding and Design 1

ICS C230: SECURE CODING
AND DESIGN
Item Value
Curriculum Committee Approval
Date

11/17/2023

Top Code 070700 - Computer Software
Development

Units 3 Total Units
Hours 72 Total Hours (Lecture Hours

54; Lab Hours 18)
Total Outside of Class Hours 0
Course Credit Status Credit: Degree Applicable (D)
Material Fee No
Basic Skills Not Basic Skills (N)
Repeatable No
Grading Policy Standard Letter (S),

• Pass/No Pass (B)

Course Description
This course is designed to provide students with the knowledge and skills
necessary to develop secure software applications and systems. In an
era marked by increasing cyber threats and data breaches, secure coding
and design have become critical aspects of software development. This
course covers best practices, principles, and techniques for identifying
and mitigating security vulnerabilities in software. Students will learn
how to design and develop applications with security in mind, reducing
the risk of exploitation and data breaches. ADVISORY: ICS C120 and ICS
C123 and CYBR C101. Transfer Credit: CSU.

Course Level Student Learning Outcome(s)
1. Describe the key principles of secure coding and design in software

development.
2. Provide mitigation techniques for common software vulnerabilities

such as injection attacks, cross-site scripting (XSS), and cross-site
request forgery (CSRF).

3. Design and develop a software application with security in mind to
reduce the risk of exploitation.

Course Objectives
• 1. Describe the importance of secure coding and design in software

development.
• 2. Discuss and outline common security vulnerabilities and threats in

software applications.
• 3. Provide examples of secure coding practices used to prevent

vulnerabilities at the code level.
• 4. Describe the concept and purpose of security by design.
• 5. Explain how to apply cryptographic techniques for data protection

and authentication.
• 6. Define secure communication and data transmission over

networks.
• 7. Provide examples of authentication and authorization mechanisms

to control access.
• 8. Discuss examples of real-world security incidents and

vulnerabilities in existing systems.

• 9. Explain the purpose of threat modeling and risk assessment to
proactively identify security issues.

Lecture Content
Introduction to Software Security The importance of software security.
Key principles of secure coding and design. Common Security
Vulnerabilities Understanding common vulnerabilities such as
injection attacks, cross-site scripting (XSS), and cross-site request
forgery (CSRF). Secure Coding Practices Input validation and output
encoding. Error handling and logging best practices. Using prepared
statements and parameterized queries. Security by Design Threat
modeling and risk assessment. Security requirements and secure
software architecture. Cryptography and Data Protection Cryptographic
algorithms and principles. Data encryption and decryption. Hashing and
digital signatures. Secure Communication and Authentication Secure
Socket Layer (SSL) and Transport Layer Security (TLS). Authentication
mechanisms and multi-factor authentication. Access Control and
Authorization Role-based access control (RBAC). Authorization
frameworks. Web Application Security Security in web applications,
including securing REST APIs. Security headers and content security
policy. Real-World Case Studies Analysis of security incidents and
vulnerabilities in existing systems.

Lab Content
Code Review and Vulnerability Identification: Analyze a code snippet
or an open-source project to identify security vulnerabilities (e.g., SQL
injection, XSS). Sanitizing User Input: Write code that accepts user
input and implement input validation and output encoding to prevent
common injection attacks (e.g., SQL injection, XSS). Authentication and
Session Management: Implement secure authentication and session
management in a web application, including password hashing and
secure session handling. Cross-Site Request Forgery (CSRF) Prevention:
Create a web application and implement anti-CSRF measures to protect
against CSRF attacks. Securing RESTful APIs: Build a simple RESTful
API and implement security mechanisms, such as API key authentication
and OAuth. Secure File Upload: Develop a feature for uploading files
while implementing security checks to prevent malicious file uploads
and execution. Encryption and Decryption: Implement data encryption
and decryption using cryptographic libraries and techniques (e.g.,
AES encryption). Security Headers Implementation: Configure security
headers (e.g., Content Security Policy, X-Content-Type-Options) in a
web application. Security Testing and Scanning: Use security testing
tools to scan a web application for vulnerabilities (e.g., OWASP ZAP
or Nessus). Access Control and Authorization: Implement role-based
access control (RBAC) for a web application, ensuring proper user access
rights. Code Refactoring for Security: Take an existing codebase and
refactor it to address identified security vulnerabilities and implement
security best practices. Secure Software Design: Collaboratively design a
software project with a focus on security by considering threat modeling
and risk assessment. Security Incident Response Simulation: Given a
simulated security incident, respond to it by analyzing the situa tion and
implementing necessary measures.

Method(s) of Instruction
• Lecture (02)
• DE Live Online Lecture (02S)
• DE Online Lecture (02X)
• Lab (04)

2 ICS C230: Secure Coding and Design

• DE Live Online Lab (04S)
• DE Online Lab (04X)

Instructional Techniques
This course will utilize a combination of lecture, hands-on guided
laboratory assignments, classroom/discussion student interactions,
problem solving, quizzes, tests, and troubleshooting assignments to
achieve the goals and objectives of this course. All instructional methods
are consistent across all modalities.

Reading Assignments
Students will be asked to read and review academic concepts in the
textbook and other materials while experiencing how working code
behaves under different conditions. Thus, practical programming
techniques are taught through personal understanding, hands-on
discovery, active learning, and discussing concepts and their results with
others.

Writing Assignments
Written assignments will focus on analysis and evaluation of real-world
case studies of vulnerability exploits and data breaches.

Out-of-class Assignments
The problem-solving exercises will include analysis of programming
language for common vulnerabilities. Secure coding skills
demonstrations are included in the hands-on projects.

Demonstration of Critical Thinking
Students will be asked to read and review academic concepts in the
textbook and other materials while experiencing how working code
behaves under different conditions. Thus, practical programming
techniques are taught through personal understanding, hands-on
discovery, active learning, and discussing concepts and their results with
others.

Required Writing, Problem Solving, Skills Demonstration
The problem-solving exercises will include analysis of software code to
identify common vulnerabilities. Programming skills demonstrations are
included in the hands-on projects.

Eligible Disciplines
Computer information systems (computer network installation,
microcomputer ...: Any bachelors degree and two years of professional
experience, or any associate degree and six years of professional
experience. Computer science: Masters degree in computer science or
computer engineering OR bachelors degree in either of the above AND
masters degree in mathematics, cybernetics, business administration,
accounting or engineering OR bachelors degree in engineering AND
masters degree in cybernetics, engineering mathematics, or business
administration OR bachelors degree in mathematics AND masters degree
in cybernetics, engineering mathematics, or business administration
OR bachelors degree in any of the above AND a masters degree in
information science, computer information systems, or information
systems OR the equivalent. Note: Courses in the use of computer
programs for application to a particular discipline may be classified,
for the minimum qualification purposes, under the discipline of the
application. Masters degree required.

Textbooks Resources
1. Required Daswani, N.; Kern, C.; Kesavan, A. Foundations of Security:
What Every Programmer Needs to Know, 1st ed. Apress, 2007 Rationale:
Low-cost textbook Legacy Textbook Transfer Data: Legacy Text

Other Resources
1. Technology related white papers and articles are available at no charge
to all students at multiple sites as recommended by the instructor. 2.
Coastline Library

