ICS C141: CONCEPTS OF
PROGRAMMING LANGUAGES

Item Value

Curriculum Committee Approval 11/17/2023

Date

Top Code 070700 - Computer Software
Development

Units 3 Total Units

Hours 72 Total Hours (Lecture Hours
54; Lab Hours 18)

Total Outside of Class Hours 0

Course Credit Status Credit: Degree Applicable (D)

Material Fee No

Basic Skills Not Basic Skills (N)

Repeatable No

Standard Letter (S),
+ Pass/No Pass (B)

Grading Policy

Course Description

This course delves into the theory and practical aspects of programming
languages, exploring the fundamental concepts that underlie various
programming paradigms. Students will gain a comprehensive
understanding of the features, syntax, and semantics of programming
languages and how they influence software development. Through

a combination of theory, hands-on coding exercises, and analysis of
programming languages, students will develop a deeper appreciation of
language design and its impact on software engineering. ADVISORY: ICS
C120. Transfer Credit: CSU; UC.

Course Level Student Learning Outcome(s)

1. Demonstrate the ability to differentiate between programming
paradigms, such as imperative, functional, object-oriented, and logic
programming.

2. Apply language design principles, including data abstraction and
encapsulation.

3. Evaluate programming languages for specific tasks and understand
trade-offs in language selection.

Course Objectives

+ 1. Describe the historical development of programming languages
and their role in computer science.

2. Give examples of programming languages for specific tasks and
explain trade-offs in language selection.

3. Provide criteria for evaluating programming languages.

* 4. Explain the role of compilers and interpreters in transforming high-
level code into executable programs.

+ 5. Explain the principles of functional programming.
* 6. Explain the principles of object-oriented design.

+ 7. Discuss the features, syntax, and semantics of programming
languages and how they influence software development.

ICS C141: Concepts of Programming Languages 1

Lecture Content

Concepts of Programming Languages Reasons for Studying Concepts
of Programming Languages Programming Domains Scientific
Applications Business Applications Artificial Intelligence Web Software
Programming Environments Evolution of the Major Programming
Languages Zuses Plankalkiil Pseudocodes The IBM 704 and Fortran
Functional Programming: Lisp Computerizing Business Records:

COBOL Object-Oriented Programming Combining Imperative and
Object-Oriented Features: C++ An Imperative-Based Object-Oriented
Language: Java Scripting Languages The Flagship .NET Language:

C# Markup-Programming Hybrid Languages Describing Syntax and
Semantics The General Problem of Describing Syntax Formal Methods
of Describing Syntax Describing the Meanings of Programs: Dynamic
Semantics Lexical and Syntax Analysis The Parsing Problem Recursive-
Descent Parsing Bottom-Up Parsing Names, Bindings, and Scopes
Names Variables The Concept of Binding Scope Data Types Primitive
Data Types Character String Types Enumeration Types Array Types
Associative Arrays Expressions and Assignment Statements Arithmetic
Expressions and Overloaded Operators Type Conversions Relational and
Boolean Expressions Short-Circuit Evaluation Assignment Statements
Mixed-Mode Assignment Statement-Level Control Structures Selection
Statements Iterative Statements Unconditional Branching Guarded
Commands Subprograms Fundamentals of Subprograms Design

Issues for Subprograms Parameter-Passing Methods Design Issues

for Functions Implementing Subprograms The General Semantics of
Calls and Returns Implementing “Simple” Subprograms Implementing
Dynamic Scoping Abstract Data Types and Encapsulation Constructs The
Concept of Abstraction Design Issues for Abstract Data Types Language
Examples Encapsulation Constructs Support for Object-Oriented
Programming Object-Oriented Programming Design Issues for Object-
Oriented Languages Reflection Concurrency Introduction to Subprogram-
Level Concurrency Java Threads C# Threads Concurrency in Functional
Languages Exception Handling and Event Handling Exception Handling in
C++ Exception Handling in Java Exception Handling in Python and Ruby
Event Handling with Java Event Handling in C# Functional Programming
Languages The First Functional Programming Language: Lisp Common
Lisp ML Haskell F# Logic Programming Languages An Overview of Logic
Programming The Origins and Basic Elements of Prolog Applications of
Logic Programming Relational Database Management Systems Expert
Systems Natural-Language Processing

Lab Content

Write a "Hello, World!" program in several programming languages,

each representing a different paradigm. Write programs in different
languages to declare variables and demonstrate various data types
(integers, floats, strings, etc.). Implement conditional statements (if-else)
and loops (for, while) in multiple languages to solve a simple problem.
Create functions or procedures in different languages to perform basic
arithmetic operations. Implement a simple class and objects in an object-
oriented language (e.g., Java or C++). Write a program in a functional
language (e.g., Scheme or Haskell) to perform a task using recursion and
higher-order functions. Solve a logic puzzle using a logic programming
language such as Prolog. Analyze and compare two programming
languages in terms of syntax, semantics, strengths, and weaknesses.
Write a simple lexical analyzer in a language like Python to tokenize a
given input code.

Method(s) of Instruction
+ Lecture (02)
+ DE Live Online Lecture (02S)
+ DE Online Lecture (02X)



2 ICS C141: Concepts of Programming Languages

- Lab (04)
* DE Live Online Lab (04S)
+ DE Online Lab (04X)

Instructional Techniques

This course will utilize a combination of lecture, hands-on guided
laboratory assignments, classroom/discussion student interactions,
problem solving, quizzes, tests, and troubleshooting assignments to
achieve the goals and objectives of this course. All instructional methods
are consistent across all modalities.

Reading Assignments

Read about the historical development of programming languages and
their role in computer science. Read about language design principles,
including data abstraction and encapsulation.

Writing Assignments

Analyze and compare programming languages based on their syntax,
semantics, and data types. Complete hands-on coding exercises.

Out-of-class Assignments

Evaluate various programming languages for specific tasks to select
the appropriate language. Discuss language design principles. Compare
programming languages based on their syntax.

Demonstration of Critical Thinking

Students will be asked to read and review academic concepts in the
textbook while experiencing how working code behaves under different
conditions. Thus, practical programming techniques are taught through
personal understanding, hands-on discovery, active learning, and
discussing concepts and their results with others.

Required Writing, Problem Solving, Skills Demonstration

The non-mathematical problem-solving exercises will include
programming language analysis and comparisons.Programming
skills demonstrations are included in the Projects, Midterm and Final
examinations.

Textbooks Resources

1. Required Sebesta, R.W. Concepts of Programming Languages, 12th
ed. Pearson, 2019 Rationale: - Legacy Textbook Transfer Data: low-cost
option

Other Resources

1. Coastline Library 2. Technology related white papers and articles are
available at no charge to all students at multiple sites as recommended
by the instructor.



