
ICS C120: Introduction to Programming 1

ICS C120: INTRODUCTION TO
PROGRAMMING
Item Value
Curriculum Committee Approval
Date

11/17/2023

Top Code 070700 - Computer Software
Development

Units 3 Total Units
Hours 72 Total Hours (Lecture Hours

54; Lab Hours 18)
Total Outside of Class Hours 0
Course Credit Status Credit: Degree Applicable (D)
Material Fee No
Basic Skills Not Basic Skills (N)
Repeatable No
Grading Policy Standard Letter (S),

• Pass/No Pass (B)

Course Description
This course provides students with an introductory exploration of
the fundamental concepts and practices in computer programming.
Designed for students with little or no prior programming experience,
this course provides a solid foundation in problem-solving, algorithmic
thinking, and coding skills. Students will learn how to design, write, and
debug computer programs using a structured and logical approach.
Through hands-on exercises and projects, students will gain the
necessary skills to become proficient programmers. ADVISORY: CIS C111.
Transfer Credit: CSU.

Course Level Student Learning Outcome(s)
1. Develop a foundational understanding of programming concepts,

including variables, data types, and basic control structures.
2. Apply fundamental control structures, including loops and conditional

statements, to control program flow.
3. Demonstrate file input/output operations to read and write data from

and to external files.

Course Objectives
• 1. Cultivate students problem-solving skills by demonstrating how

to apply programming techniques to analyze and solve real-world
problems.

• 2. Introduce algorithmic thinking and the ability to design clear, step-
by-step procedures to solve problems.

• 3. Define foundational programming concepts, including variables,
data types, and basic control structures.

• 4. Provide students with the knowledge to gain proficiency in a
programming language (e.g., Python, Java, C++) and be able to write,
debug, and modify code effectively.

• 5. Describe the importance of writing clear, well-organized, and
commented code for improved readability and maintainability.

• 6. Explore basic data structures such as arrays, lists, and dictionaries
and demonstrate how to use them to store and manipulate data.

• 7. Reflect on the ethical and social implications of programming,
including privacy, security, and responsible computing.

• 8. Demonstrate the use of fundamental control structures, including
loops and conditional statements, and apply them to control program
flow.

• 9. Demonstrate methods to identify and resolve common
programming errors and debug code effectively.

• 10. Describe how to interact with users by receiving input and
presenting output through various methods, such as console, files, or
GUIs.

Lecture Content
Introducing Computer Programming What Is a Computer Program. What
Do Programmers Do. The Software Development Life Cycle Client/Server
Applications—Getting Started Client/Server Design in Web Applications
Working with Files and Folders File and Folder Addresses for various
operating systems Program Design—From Requirements to Algorithms
What Are Instructions. Common Characteristics of Instructions
Sequence, Selection and Repetition Structures A Programming Example
Developing an Algorithm Basics of Markup—Creating a User Interface
Introducing HTML Tags Ignoring White Space Introducing HTML
Tables Introducing Style Sheets Creating a Working Program—Basics
of PHP Working with HTML and PHP How a .php File is Processed
Important Features of Client/Server Programs Receiving Input from a
Form Persistence—Saving and Retrieving Data The Difference Between
Persistent and Transient Data Files and Databases Working with a Text
File (closing, reading data from) PHP Functions to Read/Write Data
from a Text File Programs that Choose—Introducing Selection Structure
Introducing IF and IF..ELSE Structures Introducing Flow Charts Boolean
Expressions and Relational Operators Selection Using the IF Structure
Testing Threshold Values Multiple Selection, Nesting, ANDs and ORs
Validating User Input Validation Rules for the Wage Application Using
A Nested Selection Structure to Validate Input Designing Applications
with Nested Selection Structures Programs that Count—Harnessing the
Power of Repetition Controlling a Loop by Counting Coding a FOR Loop
in PHP General Syntax of a FOR Loop Using a Variable to Control the
Loop Condition “While NOT End-Of-File”—Introducing Event-Controlled
Loops Characteristics of WHILE Loops The Structure of WHILE Loops An
Algorithm to Process Files of Unknown Length Using a WHILE Loop to
Process a File of Scores Structured Data—Working with Arrays What Is an
Array. Working with Array Elements Extending an Array Arrays of Strings
Associative Arrays and Web Session Using a Variable to Reference the
Key of an Associative Array Using Associative Arrays as Lookups Using
the array() Function to Create Associative Arrays Associative Arrays
and the FOREACH Loop Program Modularity—Working with Functions
Using Functions Understanding Function Arguments Receiving Values
from a Function Reasons to Use Pre-Defined Functions Connecting
to a Database—Working with MySQL What Is a Relational Database.
The Relational Database Management System (RDBMS) Structured
Query Language—MySQL Configuring MySQL for Use with This Textbook
Introduction to Object-Oriented Programming What is an Object. Creating
and Using Instances of a Class Using Employee Objects in an Application
Defining an Object Creating and Using Instances of an Object Class More
About PHP Textbook Conventions Code Comments Location of Curly
Braces HTML and PHP Files

Lab Content
Create an Input, Processing, Output (IPO) chart Design a user interface
Create an HTML form Create an HTML form to obtain user input Read
and write data to an external text file Compare strings (e.g., testing

2 ICS C120: Introduction to Programming

a password) Program to create a bar chart (e.g., loops within loops)
Program to asssociative arrays as lookups

Method(s) of Instruction
• Lecture (02)
• DE Live Online Lecture (02S)
• DE Online Lecture (02X)
• Lab (04)
• DE Live Online Lab (04S)
• DE Online Lab (04X)

Instructional Techniques
This course will utilize a combination of lecture, hands-on guided
laboratory assignments, classroom/discussion student interactions,
problem solving, quizzes, tests, and troubleshooting assignments to
achieve the goals and objectives of this course. All instructional methods
are consistent across all modalities.

Reading Assignments
Students will read from the required textbook and any additional reading
resources provided.

Writing Assignments
For each modules programming demonstration, students will be
tasked to write a minimum number of sentences describing the errors
encountered. Student will be asked to include a screenshot in their
documentation. Students will discuss the circumstances leading to any
errors encountered. Speculate as to the nature of the bug (or error), and
ask what can be done to remedy it.

Out-of-class Assignments
Watch video demonstrations, trying each line of code typed by the
presenter. Be sure that the Integrated Development Environment (IDE) is
working. While working through the demonstration code independently,
students will be expected to take note of any errors experienced and
post them to the discussion, where other students and the instructor will
provide additional description to understand it further. At the close of
the module, the source code created will be copied/pasted into a word
processing document. A screenshot of the output the program made,
including any errors will be provided by the student.

Demonstration of Critical Thinking
Students will be asked to read and review academic concepts in the
textbook while experiencing how working code behaves under different
conditions. Thus, practical programming techniques are taught through
personal understanding, hands-on discovery, active learning, and
discussing concepts and their results with others.

Required Writing, Problem Solving, Skills Demonstration
While trying programming techniques, when bugs and challenges are
experienced, the student solves problems by writing clearly, explaining
how academic concepts are applied successfully or unsuccessfully, and
works iteratively to solve problematic code.

Eligible Disciplines
Computer science: Masters degree in computer science or computer
engineering OR bachelors degree in either of the above AND masters
degree in mathematics, cybernetics, business administration, accounting
or engineering OR bachelors degree in engineering AND masters degree
in cybernetics, engineering mathematics, or business administration OR

bachelors degree in mathematics AND masters degree in cybernetics,
engineering mathematics, or business administration OR bachelors
degree in any of the above AND a masters degree in information
science, computer information systems, or information systems OR
the equivalent. Note: Courses in the use of computer programs for
application to a particular discipline may be classified, for the minimum
qualification purposes, under the discipline of the application. Masters
degree required.

Textbooks Resources
1. Required OKane, M.. A Web-Based Introduction to Programming:
Essential Algorithms, Syntax, and Control Structures Using PHP, HTML,
and MariaDB/MySQL, 5th ed. Carolina Academic Press, 2021

Other Resources
1. Technology related white papers and articles are available at no charge
to all students at multiple sites as recommended by the instructor. 2.
Coastline Library

