
CS G262: Discrete Structures 1

CS G262: DISCRETE
STRUCTURES
Item Value
Curriculum Committee Approval
Date

05/02/2023

Top Code 070600 - Computer Science
(Transfer)

Units 3 Total Units
Hours 54 Total Hours (Lecture Hours 54)
Total Outside of Class Hours 0
Course Credit Status Credit: Degree Applicable (D)
Material Fee No
Basic Skills Not Basic Skills (N)
Repeatable No
Grading Policy Standard Letter (S)
California General Education
Transfer Curriculum (Cal-GETC)

• Cal-GETC 2A Math Concepts
(2A)

Intersegmental General Education
Transfer Curriculum (IGETC)

• IGETC 2A Math Concepts (2A)

California State University General
Education Breadth (CSU GE-
Breadth)

• CSU B4 Math/Quant.Reasoning
(B4)

Course Description
This course is an introduction to the discrete structures used in Computer
Science with an emphasis on their applications. Topics covered include:
Functions, Relations and Sets; Basic Logic; Proof Techniques; Basics of
Counting; Graphs and Trees; and Discrete Probability. PREREQUISITE: CS
G153 or CS G175; and course taught at the level of intermediate algebra
or appropriate math placement. Transfer Credit: CSU; UC. C-ID: COMP
152. C-ID: COMP 152.

Course Level Student Learning Outcome(s)
1. ILOs
2. iSLO 1. Specialized Subject Knowledge (Majors) - Demonstrate a

depth of knowledge, skills, and abilities in a particular major.
3. iSLO 3. Analytic skills - Identify, evaluate, and apply a variety of

methods to solve problems.
4. iSLO 4. Information competency skills - Determine the scope of

information needs; locate and retrieve relevant information; organize,
analyze, and evaluate information; and understand the ethical and
legal issues surrounding information and information technology.

5. iSLO 5. Quantitative skills - Convert information into relevant
symbolic and mathematical forms (e.g. equations, graphs, diagrams,
tables), provide accurate explanations of information presented in
mathematical forms, and successfully perform calculations and
symbolic operations.

6. Course Outcomes
7. Describe how formal tools of symbolic logic are used to model real-

life situations, including those arising in computing contexts such as
program correctness, database queries, and algorithms.

8. Relate the ideas of mathematical induction to recursion and
recursively defined structures.

9. Analyze a problem to create relevant recurrence equations.

10. Demonstrate different traversal methods for trees and graphs.
11. Apply the binomial theorem to independent events and Bayes'

theorem to dependent events.

Course Objectives
• 1. Construct truth tables using propositional logic and logical

connectives.
• 2. Explain sets, functions, and sequences and summations and their

applications.
• 3. Solve counting problems using the Pigeonhole Principle,

permutations, and combinations.
• 4. Calculate discrete probability problems including conditional

probability, Bayes Theorem, and mathematical expectation.
• 5. Construct recursive definitions and recursive algorithms.
• 6. Define graph terminology and types of graphs and use this

terminology to solve graph theory problems including the existence
of Euler and Hamilton circuits and paths, shortest-path problems, and
graph coloring.

• 7. Define tree terminology and identify applications of trees.
• 8. Perform tree traversal techniques and find spanning trees and

minimum spanning trees.
• 9. Define regular sets and show how languages can be recognized by

finite-state automata and Turing machines.
• 10. Solve counting problems using Inclusion-Exclusion.
• 11. Solve recurrence relations.

Lecture Content
Functions, Relations and Sets Functions (surjections, injections, inverses,
composition) Relations (reflexivity, symmetry, transitivity, equivalence
relations) Sets (Venn diagrams, complements, Cartesian products,
power sets) Pigeonhole principles Cardinality and countability Basic
Logic Propositional logic Logical connectives Truth tables Normal forms
(conjunctive and disjunctive) Validity Predicate logic Universal and
existential quantification Modus ponens and modus tollens Limitations
of predicate logic Proof Techniques Notions of implication, converse,
inverse, contrapositive, negation, and contradiction The structure of
mathematical proofs Direct proofs Proof by counterexample Proof
by contradiction Mathematical induction Strong induction Recursive
mathematical definitions Well orderings Basics of Counting Counting
arguments Sum and product rule Inclusion-exclusion principle Arithmetic
and geometric progressions Fibonacci numbers The pigeonhole principle
Permutations and combinations Basic definitions Pascals identity The
binomial theorem Solving recurrence relations Common examples The
Master theorem Graphs and Trees Trees Undirected graphs Directed
graphs Spanning trees/forests Traversal strategies Discrete Probability
Finite probability space, probability measure, events Conditional
probability, independence, Bayes theorem Integer random variables,
expectation Law of large numbers

Lab Content
No lab required.

Method(s) of Instruction
• Lecture (02)
• DE Live Online Lecture (02S)
• DE Online Lecture (02X)

2 CS G262: Discrete Structures

Reading Assignments
Textbook and instructor provided handouts.

Writing Assignments
Create diagrams and reports on procedures for computer programs and
theory applications.

Out-of-class Assignments
Students will create programming and theoretical solutions for problems
assigned in class.

Demonstration of Critical Thinking
Students will analyze computational problems and provide algorithmic
solutions that will have the proper mathematical support for correctness
and efficiency like finding a loop invariant or defining the growth function
for an algorithm complexity.

Required Writing, Problem Solving, Skills Demonstration
Students will be required to solve computational problems through
algorithms that are correct, finite, and practical.

Eligible Disciplines
Computer science: Masters degree in computer science or computer
engineering OR bachelors degree in either of the above AND masters
degree in mathematics, cybernetics, business administration, accounting
or engineering OR bachelors degree in engineering AND masters degree
in cybernetics, engineering mathematics, or business administration OR
bachelors degree in mathematics AND masters degree in cybernetics,
engineering mathematics, or business administration OR bachelors
degree in any of the above AND a masters degree in information
science, computer information systems, or information systems OR
the equivalent. Note: Courses in the use of computer programs for
application to a particular discipline may be classified, for the minimum
qualification purposes, under the discipline of the application. Masters
degree required.

Textbooks Resources
1. Required Jenkyns, T., Stephenson, B. Fundamentals of Discrete Math
for Computer Science: A Problem-Solving Primer (Undergraduate Topics
in Computer Science), 2nd (latest) ed. Springer, 2018 Rationale: New
textbook edition.

