
CS G242: Computer Architecture and Organization 1

CS G242: COMPUTER
ARCHITECTURE AND
ORGANIZATION
Item Value
Curriculum Committee Approval
Date

05/02/2023

Top Code 070600 - Computer Science
(Transfer)

Units 3 Total Units
Hours 54 Total Hours (Lecture Hours 54)
Total Outside of Class Hours 0
Course Credit Status Credit: Degree Applicable (D)
Material Fee No
Basic Skills Not Basic Skills (N)
Repeatable No
Grading Policy Standard Letter (S)

Course Description
This course will cover the organization and behavior of real computer
systems at the assembly-language level. The mapping of statements
and constructs in a high-level language onto sequences of machine
instructions is studied, as well as the internal representation of simple
data types and structures. Numerical computation is examined, noting
the various data representation errors and potential procedural errors.
ADVISORY: CS G153 or CS G175. Transfer Credit: CSU; UC. C-ID: COMP
142. C-ID: COMP 142.

Course Level Student Learning Outcome(s)
1. Course Outcomes
2. Identify the fundamental components, both hardware and software, in

the architectural and organizational design of a computer system.
3. Identify errors arising from binary representation.
4. Create assembly language segments with the correct data structure.

Course Objectives
• 1. Compare and contrast the impact on system performance of

varying computer system architectures.
• 2. Describe the manner in which the architectural and organization

components of computer system work, individually and collectively.
• 3. Solve problems involving operations of computer arithmetic and

identify errors arising from binary representation.
• 4. Write the software code, mathematical formulas/expressions, and

algorithms in the Assembly language.
• 5. Interact with input, output devices via the interrupts.

Lecture Content
Bits, bytes, and words Electronic hardware for bits and groups of bits
Logic gates Logic circuits Mathematical equivalence of binary and
decimal Memory storage Data formats ASCII (American Standard for
Communication and Information Interchange) character code Numeric
data representation and number bases Binary, octal, decimal, and
hexadecimal representations Computer arithmetic Arithmetic errors

Overflow and underflow Basic data types Fixed and floating-point
systems Fractions in binary Fixed point integers Floating-point format
IEEE 754 floating-point standard Floating-point hardware Floating-point
numerical accuracy Signed and twos-complement representations Data
type ranges Signed data type arithmetic Representation of nonnumeric
data (character codes, graphical data) ASCII character code Other codes
Binary Coded Decimal (BCD) code Gray code Pixel memory representation
Representation of records and arrays Memory addresses Data types
and byte allocation Indexed memory locations Basic organization of the
von Neumann machine Computer subsystems Subsystems interactions
Control unit; instruction fetch, decode, and execution Central Processing
Unit (CPU) CPU registers Interaction with memory and I/O (Input/Output)
Instruction sets and types (data manipulation, control, I/O) 16-bit, 32-
bit, 64-bit instruction sets CPU modes Assembly/machine language
programming Assembler listings Linkers The assignment operator
Addition and subtraction operators Program flow constructs Instruction
formats General format of instructions Register extend prefix (REX) byte
Scale/Index/Base (SIB) byte Mode/Register/Memory (ModeRM) byte
Addressing modes Register direct Immediate data Base register plus
offset Register instruction pointer (rip)-relative Indexed Subroutine call
and return mechanisms Passing arguments Call stack Local variables
on the call stack Return value and the frame pointer I/O and interrupts
Hardware interrupts Software interrupts Exceptions Memory timing I/O
device timing Bus timing I/O interfacing I/O ports Interrupt-driven I/O

Lab Content
No lab required

Method(s) of Instruction
• Lecture (02)
• DE Live Online Lecture (02S)
• DE Online Lecture (02X)

Reading Assignments
Textbook and instructor provided handouts.

Writing Assignments
Diagrams and reports on procedures for computer components assemble
and utilize.

Out-of-class Assignments
Students will create Assembly solutions for problems assigned in class.

Demonstration of Critical Thinking
Students will analyze problem requirements and select hardware and/
or data structures for efficient solution implementation. Testing and
debugging will require students to perform data tracing and problem
isolation during program execution.

Required Writing, Problem Solving, Skills Demonstration
Students will be required to complete Assembly projects presented to
them in the form of business automation problems requiring solution
implementation. Students will be required to write documentation for
their hardware projects.

Eligible Disciplines
Computer science: Masters degree in computer science or computer
engineering OR bachelors degree in either of the above AND masters
degree in mathematics, cybernetics, business administration, accounting
or engineering OR bachelors degree in engineering AND masters degree
in cybernetics, engineering mathematics, or business administration OR

2 CS G242: Computer Architecture and Organization

bachelors degree in mathematics AND masters degree in cybernetics,
engineering mathematics, or business administration OR bachelors
degree in any of the above AND a masters degree in information
science, computer information systems, or information systems OR
the equivalent. Note: Courses in the use of computer programs for
application to a particular discipline may be classified, for the minimum
qualification purposes, under the discipline of the application. Masters
degree required.

Textbooks Resources
1. Required Robert G. Plantz, Ph.D. Introduction to Computer
Organization: An Under the Hood Look at Hardware and x86-64 Assembly,
latest ed. No Starch Press, 2022 2. Required Stallings, William. Computer
Organization and Architecture, 11th (latest) ed. Pearson, 2019 Rationale:
Textbook has comprehensive coverage for hardware topics and less for
Assembly programming.

