CS G231: PYTHON
PROGRAMMING 2

Item Value

Curriculum Committee Approval 05/03/2022

Date

Top Code 070710 - Computer Programming

Units 3 Total Units

Hours 90 Total Hours (Lecture Hours
36; Lab Hours 54)

Total Outside of Class Hours 0

Course Credit Status Credit: Degree Applicable (D)

Material Fee No

Basic Skills Not Basic Skills (N)

Repeatable No

Grading Policy Standard Letter (S),

+ Pass/No Pass (B)

Course Description

This course covers data structures and object-oriented programming
(OOP) concepts using the Python language. Arrays, queues, stacks,
linked-lists, trees, hashing, graphs, recursion, sorting, searching,
optimization, classes, objects, inheritance, polymorphism, and algorithm
complexity will be discussed and practiced. PREREQUISITE: CS G131, CS
G153, or CS G175. Transfer Credit: CSU; UC. C-ID: COMP 132.C-ID: COMP
132.

Course Level Student Learning Outcome(s)
1. Course Outcomes
2. Implement object-oriented class hierarchy and inheritance.

3. Apply complex data storage mechanisms and manipulation
algorithms.

4. Develop programs that use abstract data structures.

Course Objectives

+ 1. Summarize advanced object-oriented programming concepts in
Python.

+ 2. Utilize modules including containers from the Python built-in
library.

+ 3. Create iterators and recursive algorithms to find, remove, reverse,
and edit elements in containers.

* 4. Apply exception handling.

+ 5. Apply software development methodologies and debugging
techniques.

* 6. Apply algorithm optimization for improved efficiency.

+ 7. Design abstract data structures using classes and objects.
+ 8. Apply inheritance, polymorphism, searching and sorting.

+ 9. Utilize stacks, queues, trees and linked-lists.

Lecture Content

Python Fundamentals Python Overview Objects in Python Expressions,
Operators, and Precedence Control Flow Functions Simple Input and
Output Exception Handling Iterators and Generators Scopes and

CS G231: Python Programming 2 1

Namespaces Modules and the Import Statement Object-Oriented
Programming Goals, Principles, and Patterns Software Development
Class Definitions Inheritance Namespaces and Object-Orientation
Shallow and Deep Copying Algorithm Analysis Experimental Studies
Moving Beyond Experimental Analysis The Seven Functions Used

in This Book Asymptotic Analysis Simple Justification Techniques
Recursion lllustrative Examples Analyzing Recursive Algorithms
Designing Recursive Algorithms Eliminating Tail Recursion Array-Based
Sequences Pythons Sequence Types Low-Level Arrays Dynamic Arrays
and Amortization Efficiency of Pythons Sequence Types Using Array-
Based Sequences Multidimensional Data Sets Stacks, Queues, and
Deques Stacks Queues Double-Ended Queues Linked Lists Singly Linked
Lists Circularly Linked Lists Doubly Linked Lists The Positional List ADT
Sorting a Positional List Link-Based vs Array-Based Sequences Trees
General Trees Binary Trees Implementing Trees Tree Traversal Algorithms
Priority Queues The Priority Queue Abstract Data Type Implementing a
Priority Queue Heaps Sorting with a Priority Queue Adaptable Priority
Queues Maps, Hash Tables, and Skip Lists Maps and Dictionaries Hash
Tables Sorted Maps Skip Lists Sets, Multisets, and Multimaps Search
Trees Binary Search Trees Balanced Search Trees Python Framework

for Balancing Search Trees AVL Trees Splay Trees (2,4) Trees Red-

Black Trees Sorting and Selection Sorting Algorithms Analysis Merge-
Sort Quick-Sort Comparing Sorting Algorithms Pythons Built-In Sorting
Functions Selection Text Processing Digitized Text Pattern-Matching
Algorithms Dynamic Programming Text Compression and the Greedy
Method Tries Graph Algorithms Graphs Data Structures for Graphs Graph
Traversals Transitive Closure Directed Acyclic Graphs Shortest Paths
Minimum Spanning Trees Memory Management and B-Trees Memory
Management Memory Hierarchies and Caching External Searching and B-
Trees External-Memory Sorting

Lab Content

Code all the necessary expressions, branches, loops, functions, and
classes Add the appropriate error handling routines Classes and object-
oriented programming Break the programs into appropriate classes
Inheritance and polymorphism Linked lists and iterators Recursive
techniques Stacks using arrays or linked lists Queues using arrays or
linked lists Binary trees Hashing techniques Maps and sets Searching
and sorting Graphs and data modeling Processing large text files External
Python modules

Method(s) of Instruction
+ Lecture (02)
+ DE Live Online Lecture (02S)
+ DE Online Lecture (02X)
- Lab (04)
+ DE Live Online Lab (04S)
+ DE Online Lab (04X)

Reading Assignments

Textbook, online resources, and instructor prepared materials.

Writing Assignments

Students will be required to complete software development projects
presented to them in the form of business automation or scientific
problems requiring Python solution implementation. Students will be
required to write documentation on their projects.



2 CS G231: Python Programming 2

Out-of-class Assignments

An optional library research paper will promote further study and research
in current Python programming or other related topics selected by the
student and approved by the instructor.

Demonstration of Critical Thinking

Students will analyze requirements and select data structures for
efficient Python solution implementation. Testing and debugging will
require students to perform data tracing and problem isolation during
program execution.

Required Writing, Problem Solving, Skills Demonstration

Students will be required to complete software development projects
presented to them in the form of business automation problems
requiring solution implementation. Students will be required to write
documentation on their projects.

Eligible Disciplines

Computer science: Masters degree in computer science or computer
engineering OR bachelors degree in either of the above AND masters
degree in mathematics, cybernetics, business administration, accounting
or engineering OR bachelors degree in engineering AND masters degree
in cybernetics, engineering mathematics, or business administration OR
bachelors degree in mathematics AND masters degree in cybernetics,
engineering mathematics, or business administration OR bachelors
degree in any of the above AND a masters degree in information
science, computer information systems, or information systems OR

the equivalent. Note: Courses in the use of computer programs for
application to a particular discipline may be classified, for the minimum
qualification purposes, under the discipline of the application. Masters
degree required.

Textbooks Resources

1. Required Liang, Daniel Y.. Introduction to Python Programming and
Data Structures, 2nd ed. Pearson, 2020



