
CS G189: C++ Programming 2 1

CS G189: C++ PROGRAMMING
2
Item Value
Curriculum Committee Approval
Date

11/05/2024

Top Code 070710 - Computer Programming
Units 3 Total Units
Hours 90 Total Hours (Lecture Hours

36; Lab Hours 54)
Total Outside of Class Hours 0
Course Credit Status Credit: Degree Applicable (D)
Material Fee No
Basic Skills Not Basic Skills (N)
Repeatable No
Open Entry/Open Exit No
Grading Policy Standard Letter (S),

• Pass/No Pass (B)

Course Description
Formerly: Data Structures with C++. This course covers data structures
and object-oriented programming (OOP) concepts using the C++
language. Arrays, queues, stacks, linked-lists, trees, hashing, graphs,
recursion, sorting, searching, optimization, classes, objects, inheritance,
polymorphism, and algorithm complexity will be discussed and practiced.
PREREQUISITE: CS G153 or CS G175. Transfer Credit: CSU; UC. C-ID:
COMP 132. C-ID: COMP 132.

Course Level Student Learning Outcome(s)
1. Course Outcomes
2. Apply complex data storage mechanisms and manipulation

algorithms.
3. Implement object-oriented class hierarchy and inheritance.
4. Develop programs that use abstract data structures.

Course Objectives
• 1. Summarize advanced object-oriented programming concepts in C+

+.
• 2. Utilize modules including containers from the Standard Template

Library (STL).
• 3. Create iterators and recursive algorithms to find, remove, reverse,

and edit elements in containers.
• 4. Manipulate bitwise algorithms.
• 5. Apply exception handling.
• 6. Apply software development methodologies and debugging

techniques.
• 7. Improve algorithm optimization and efficiency.
• 8. Design abstract data structures using classes and objects.
• 9. Apply inheritance, polymorphism, searching and sorting.
• 10. Utilize stacks, queues, trees and linked-lists.

Lecture Content
C++ and object oriented programming overview Primitive types, arrays,
records, and string processing Declaration models, type-checking
Classes and instances of class data types Member and non-member
functions Encapsulation and data hiding Aggregation and composition
Inheritance and class hierarchies Polymorphism and virtual functions
Exception handling Files and streams String stream Garbage collection
Data representation in memory Static, stack, and heap allocation
Runtime storage management Pointers and references Abstract Data
Structure (ADT) Linked lists using array implementation Linked lists
using classes Doubly linked lists Stacks and queues using arrays Stacks
and queues using linked-lists Trees Binary search trees Balanced trees
Traversal algorithms Data modeling and manipulation using graphs
Containers, collections, and iterators Maps and hash tables Map ADT
Hash tables and hash functions Collision-handling schemes Recursive
mathematical functions Simple recursive procedures Divide-and-conquer
strategies Recursive backtracking Standard Template Library (STL) Type
parameters and parameterized types-templates or generics STL string
class Dynamic array classes (vector and deque classes) Doubly linked list
(STL list class) Efficient searches using STL associative containers (set,
multiset, map and multi-map) Supplying custom sort predicates (unary
and binary) Concept and usage of function objects Adaptive containers
(STL stack, que ue and priority queue classes) Organize and manipulate
bitwise information using STL bit set and vector classes Smart pointers
Searching and sorting algorithms Algorithm design and optimization
Using inheritance to implement priority queues Using polymorphism
principles to store objects of varying types in a collection class Software
development Design strategy and debugging techniques Development
models

Lab Content
Pointers and references Classes and object-oriented programming
Inheritance and polymorphism Templates and parameterized types
Linked lists and iterators Recursive techniques Stacks using arrays
or linked lists Queues using arrays or linked lists Binary trees Hashing
techniques Searching and sorting Graphs Create a project with the
correct file structure Break the programs into appropriate classes Design
a simple user interface to satisfy the user interactions Code all the
necessary expressions, branches, loops, functions, and classes Add the
appropriate error handling routines

Method(s) of Instruction
• Lecture (02)
• DE Live Online Lecture (02S)
• DE Online Lecture (02X)
• Lab (04)
• DE Live Online Lab (04S)
• DE Online Lab (04X)

Reading Assignments
Textbook, online resources, and instructor prepared materials.

Writing Assignments
Students will be required to complete software development projects
presented to them in the form of business automation problems
requiring solution implementation. Students will be required to write
documentation on their projects.

2 CS G189: C++ Programming 2

Out-of-class Assignments
An optional library research paper will promote further study and research
in current Windows Programming or other related topics selected by the
student and approved by the instructor.

Demonstration of Critical Thinking
Students will analyze requirements and select the appropriate data
structures for an efficient solution implementation. Testing and
debugging will require students to perform data tracing and problem
isolation during program execution.

Required Writing, Problem Solving, Skills Demonstration
Students will be required to complete software development projects
presented to them in the form of business automation problems
requiring solution implementation. Students will be required to write
documentation on their projects.

Eligible Disciplines
Computer science: Master's degree in computer science or computer
engineering OR bachelor's degree in either of the above AND master's
degree in mathematics, cybernetics, business administration, accounting
or engineering OR bachelor's degree in engineering AND master's degree
in cybernetics, engineering mathematics, or business administration OR
bachelor's degree in mathematics AND master's degree in cybernetics,
engineering mathematics, or business administration OR bachelor's
degree in any of the above AND a master's degree in information
science, computer information systems, or information systems OR
the equivalent. Note: Courses in the use of computer programs for
application to a particular discipline may be classified, for the minimum
qualification purposes, under the discipline of the application. Master's
degree required.

Textbooks Resources
1. Required Malik, D.S. . Data Structures Using C++ , 2nd ed. Cengage
(Latest), 2010 , ISBN: 032119716X. Rationale: - 2. Required Liang, Daniel
Y.. Introduction to C++ Programming and Data Structures, 5th ed. Georgia
Southern University: Pearson, 2022

Other Resources
1. Instructor prepared materials.

