
CS G175: C++ Programming 1 1

CS G175: C++ PROGRAMMING
1
Item Value
Curriculum Committee Approval
Date

04/05/2022

Top Code 070710 - Computer Programming
Units 3 Total Units
Hours 90 Total Hours (Lecture Hours

36; Lab Hours 54)
Total Outside of Class Hours 0
Course Credit Status Credit: Degree Applicable (D)
Material Fee No
Basic Skills Not Basic Skills (N)
Repeatable No
Grading Policy Standard Letter (S),

• Pass/No Pass (B)

Course Description
Formerly: C++ Programming. This course introduces the fundamentals of
software development using the C++ programming language. Software
development process will include: designing, writing source code,
compiling, linking, executing, and debugging. Data types, arithmetic and
logical expressions, debugging, looping, branching, modularization, static
and dynamic memory allocation, classes and objects will be presented
in lectures and practiced through lab projects. Console applications will
be designed and implemented. ADVISORY: CS G102 and course taught at
the level of intermediate algebra or appropriate math placement. Transfer
Credit: CSU; UC. C-ID: COMP 122. C-ID: COMP 122.

Course Level Student Learning Outcome(s)
1. Course Outcomes
2. Create a program that uses object oriented programming constructs.
3. Apply the techniques of structured (functional) decomposition to

break a program into smaller pieces.
4. Construct error handling routines.

Course Objectives
• 1. Summarize the evolution of programming languages.
• 2. Design software solutions for business and scientific problems.
• 3. Formulate and document the problem solution.
• 4. Translate mathematical formulas/expressions, and algorithms in

the C++ language.
• 5. Resolve coding and logic errors using sophisticated debugging

tools.
• 6. Apply optimization techniques.
• 7. Develop a large software solution into modules using structured

decomposition.
• 8. Analyze static and dynamic memory allocations.
• 9. Modify input, output devices and files.
• 10. Develop applications using Object-Oriented Programming (OOP)

paradigms.

Lecture Content
Survey of Programming Languages Binary instructions and low level
languages Compiled vs. translated languages Scripting languages
Programming languages evolution Programming concepts Compiling
and linking Data types Variables and constants Arithmetic and logical
expressions Conversion of business and scientific formulas Branching
and looping Arrays, vectors, and strings Input/Output (I/O) formatting
Modularization using structured decomposition Functions Parameter
passing Local and global variables Static variables Default arguments
Overloading functions Functions and menu-driven programming Stubs
and drivers Memory management Dynamic memory allocation and
deallocation Garbage collection Pointers Pointers to arrays and strings
Memory watch for debugging Searching and sorting Linear vs. binary
search Sorting algorithms Algorithm complexity analysis Recursion
Recursively defined problems Recursive vs. iterative implementations
Files and streams Sequential-access for ASCII files Binary files Random-
access files Command-line arguments Object-oriented programming
(OOP) paradigm Abstract data types Classes and objects Constructors,
accessors, and mutators Static members Friends of classes Operator
overload UML diagrams Aggregation and composition CRC (Class
Responsibility and Collaboration) cards Inheritance Errors and exceptions
< Input errors Exception handling Programming paradigms Console
programming Event-driven programming Software development process
Development methodologies Requirements and specifications Designing
solution: charts and UML diagrams Coding and unit testing Documenting
requirements, specifications, solution options, and user guides Testing
and debugging

Lab Content
Introduction to computers and C++ programming C++ basics More
flow of control Procedural abstraction and functions that return a value
Functions for all subtasks I/O streams as an introduction to objects and
classes Arrays Strings and vectors Pointers and dynamic arrays Defining
classes Friends, overloaded operators, and arrays in classes Separate
compilation and namespaces Pointers and linked lists Recursion
Inheritance Exception handling Templates Standard Template Library
(STL) and C++11

Method(s) of Instruction
• Lecture (02)
• DE Live Online Lecture (02S)
• DE Online Lecture (02X)
• Lab (04)
• DE Live Online Lab (04S)
• DE Online Lab (04X)

Reading Assignments
Textbook and Websites

Writing Assignments
Students will be required to complete software development projects
presented to them in the form of business automation problems
requiring solution implementation. Students will be required to write
documentation for their projects.

Out-of-class Assignments
An optional library research paper will promote further study and research
in current Windows Programming or other related topics selected by the
student and approved by the instructor.

2 CS G175: C++ Programming 1

Demonstration of Critical Thinking
Students will analyze requirements and select the appropriate
programming structures for an efficient solution implementation. Testing
and debugging will require students to perform data tracing and error
isolation during program execution.

Required Writing, Problem Solving, Skills Demonstration
Students will be required to complete software development projects
presented to them in the form of business automation problems
requiring solution implementation. Students will be required to write
documentation for their projects.

Eligible Disciplines
Computer science: Masters degree in computer science or computer
engineering OR bachelors degree in either of the above AND masters
degree in mathematics, cybernetics, business administration, accounting
or engineering OR bachelors degree in engineering AND masters degree
in cybernetics, engineering mathematics, or business administration OR
bachelors degree in mathematics AND masters degree in cybernetics,
engineering mathematics, or business administration OR bachelors
degree in any of the above AND a masters degree in information
science, computer information systems, or information systems OR
the equivalent. Note: Courses in the use of computer programs for
application to a particular discipline may be classified, for the minimum
qualification purposes, under the discipline of the application. Masters
degree required.

Textbooks Resources
1. Required Tony Gaddis, Judy Walters, Godfrey Muganda. Starting Out
with C++: Early Objects, 10th ed. Pearson, 2020 Rationale: .

Other Resources
1. Instructor prepared materials.

