CS A262: DISCRETE
STRUCTURES

Item Value

Curriculum Committee Approval 04/08/2020

Date

Top Code 070600 - Computer Science
(Transfer)

Units 3 Total Units

Hours 90 Total Hours (Lecture Hours
36; Lab Hours 54)

Total Outside of Class Hours 0

Course Credit Status Credit: Degree Applicable (D)
Material Fee No

Basic Skills Not Basic Skills (N)
Repeatable No

Standard Letter (S)

+ OC Comm/Analytical Thinking -
AA (0A2)

Grading Policy
Associate Arts Local General
Education (GE)

Associate Science Local General
Education (GE)

+ OCC Comm/AnalyticalThinking-
AS (0AS2)

+ OCC Mathematics (OMTH)

California State University General
Education Breadth (CSU GE-
Breadth)

+ CSU B4 Math/Quant.Reasoning
(B4)

Course Description

An introduction to the discrete structures used in Computer Science with
an emphasis on their applications. Topics covered include functions,
relations, sets, basic logic, proof techniques, basics of counting, graphs,
trees, and discrete probability. PREREQUISITE: CS A100, CS A122,CS
A131, CS A150, or CS A170. Transfer Credit: CSU; UC. C-ID: COMP 152.C-
ID: COMP 152.

Course Level Student Learning Outcome(s)
1. Recognize and use basic logic notation.
2. Demonstrate different traversal methods for trees and graphs.
3. Analyze recursive algorithms.

Course Objectives

+ 1. Describe how formal tools of symbolic logic are used to model real-
life situations, including those arising in computing contexts such as
program correctness, database queries, and algorithms.

+ 2. Relate the ideas of mathematical induction to recursion and
recursively defined structures.

+ 3. Analyze a problem to create relevant recurrence equations.
* 4. Demonstrate different traversal methods for trees and graphs.

5. Apply the binomial theorem to independent events and Bayes
theorem to dependent events.

CS A262: Discrete Structures 1

Lecture Content

Logic Propositional logic Logical connectives Truth tables Normal forms
(conjuctive and disjunctive) Propositional equivalences De Morgans
Laws Predicate logic Universal and existential quantification Validity
Modus ponens and modus tollens Limitations of predicate logic Proofs
Notions of implication, converse, inverse, contrapositive, negation,

and contradiction The structure of mathematical proofs Direct proofs
Proofs by counterexample Proofs by contradiction Functions One-to-

one and onto functions (injective and surjective) Inverse functions
Compositions of functions Sets Venn diagrams Cartesian products
Power sets Complements Unions and intersections Sequences and
Summations Arithmetic and geometric progressions Summation notation
Cardinality Matrices Matrix arithmetic Transposes and power of matrices
Zero-one matrices Algorithms The growth of functions Complexity of
algorithms Sequential vs. binary search algorithms Relations Reflexive,
symmetric, and transitive relations Equivalence relations Recurrence
relations Solving linear recurrence relations Integers Representation

of integers Division Modular arithmetic Primes and greatest common
divisors Induction and Recursion Mathematical induction Strong
induction Well ordering Recursive mathematical definitions Fibonacci
Numbers Counting Counting arguments Sum and product rule Generating
functions Inclusion-exclusion principle The pigeonhole principle
Permutations and combinations The Binomial Theorem Pascals identity
The Master Theorem Discrete Probability Finite probability The probability
of combinations and events Conditional probability Independence
Random variables Bayes Theorem Graphs and Trees Graph terminology
Directed graphs Undirected graphs Spanning trees/forests Traversal
strategies Expected values and variance Law of large numbers

Lab Content

The following is a list of possible programming labs that are related

to the content topics: Logic Design and implement decision-making
algorithms. Given truth values of propositions, find the truth values

of the conjunction, disjunction, exclusive or, conditional statement,

and bi-conditional of these propositions. Algorithms and Functions
Decompose a program into functions that perform subtasks. Analyze and
trace the execution of computer programs. Sets Write applications that
determine the union and intersection of sets. Given a finite set, compute
all elements of its power set. Design and implement an algorithm that
returns the Cartesian product of two sets. Summations Implement
loops to solve summations. Determine the number of comparisons
used by different sorting algorithms. Matrices Represent matrices
using two-dimensional arrays. Write applications that add and multiply
matrices. Integers Implement Euclids algorithm for finding GCD. Write
applications that convert numbers into binary, hexadecimal and/or
decimal representations. Counting Create possible combinations and
permutations using loops. Count the number of possible combinations
and permutations through enumeration, for moderate number of
possibilities. Recursion Find solutions to problems using recursive
functions. Compare iterative solutions to recursive solutions. Graphs
Represent graphs as adjacency matrices using arrays.

Method(s) of Instruction
+ Lecture (02)
+ DE Online Lecture (02X)
- Lab (04)
+ DE Online Lab (04X)

Instructional Techniques
Lecture, demonstrations, exercises, and programming labs.



2 CS A262: Discrete Structures

Reading Assignments

Students will spend a minimum of 4 hours per week reading the textbook
and/or other reading material assigned. Students will be expected to
follow along with the exercises in the reading material.

Writing Assignments

Students will spend a minimum of 6 hours per week writing logical, step-
by-step solutions to assigned exercises and programming labs.

Out-of-class Assignments

Students will spend a minimum of 6 hours per week completing weekly
programming assignments.

Demonstration of Critical Thinking

Critical thinking will be evaluated in both the midterm and final exams
through a problem-solving approach.

Required Writing, Problem Solving, Skills Demonstration

Writing is encouraged throughout the course, but is not necessarily a part
of the grading or the exams.

Eligible Disciplines

Computer science: Masters degree in computer science or computer
engineering OR bachelors degree in either of the above AND masters
degree in mathematics, cybernetics, business administration, accounting
or engineering OR bachelors degree in engineering AND masters degree
in cybernetics, engineering mathematics, or business administration OR
bachelors degree in mathematics AND masters degree in cybernetics,
engineering mathematics, or business administration OR bachelors
degree in any of the above AND a masters degree in information
science, computer information systems, or information systems OR

the equivalent. Note: Courses in the use of computer programs for
application to a particular discipline may be classified, for the minimum
qualification purposes, under the discipline of the application. Masters
degree required.

Textbooks Resources
1. Required Irani, S., Edgcomb, A., Lysecky S., Vahid, F, Sui, R., Majidi, AJ.
CS A262: Discrete Structures, 1st ed. Wiley, 2019



