CS A250: C++ PROGRAMMING
LANGUAGE 2

Item Value

Curriculum Committee Approval 12/06/2023

Date

Top Code 070600 - Computer Science
(Transfer)

Units 4 Total Units

Hours 108 Total Hours (Lecture Hours
54; Lab Hours 54)

Total Outside of Class Hours 0

Course Credit Status Credit: Degree Applicable (D)

Material Fee Yes
Basic Skills Not Basic Skills (N)
Repeatable No

Standard Letter (S),
+ Pass/No Pass (B)

Grading Policy

Course Description

Second course in ANSI/ISO Standard C++ programming language. Topics
include sorting and searching, data structures, operator overloading,
memory management, exception handling, name scope management,
polymorphism, templates, STL containers, STL algorithm and iterators,
and functional programming. PREREQUISITE: CS A150; and CS A100, CS
A122, CS A131 or CS A170. Transfer Credit: CSU; UC.

Course Level Student Learning Outcome(s)

1. Use C++ to solve problems that incorporate the use of class and
function templates, linked lists, and overloaded operators.

2. Use a functional programming language to solve problems by
implementing lambda expressions.

Course Objectives
+ 1. Compare performance of various sort and search techniques.

2. Create class templates and function templates that show the
extensibility of the language.

3. Create programs that use the container classes in the Standard
Template Library (STL).

4. Apply memory management techniques to solve problems.

5. Differentiate between the assignment operator and the copy
constructor.

6. Produce programs that use the concept of overloaded functions
and operators with respect to classes.

7. Implement and manipulate singly- and doubly-linked lists.

+ 8. Produce programs that show the understanding of polymorphism
as it applies to C++.

+ 9. Apply the concept of abstract classes to enhance their
understanding of OOP concepts.

+ 10. Produce programs that use the exception handling features of the
language.

+ 11. Produce programs that show an understanding and appreciation

for iterators and algorithms in STL.

CS A250: C++ Programming Language 2 1

+ 12. Produce programs that show an introductory understanding of
functional programming.

Lecture Content

Separate compilation Principles of Encapsulation Header files
Implementation files Reusable components Using #ifndef Algorithm
efficiency Big-O notation Estimate the efficiency of algorithms Compare
the performance of algorithms Compare sequential search and binary
search Linked data representations Standard lists and iterators
Implement singly- and doubly-linked lists Insert and remove nodes

in singly- and doubly-linked lists Stacks and queues STL common
containers and algorithms Operator overloading Overloading simple
arithmetic operators Overloading comparison operators Overloading
input and output Overloading increment and decrement operators
Overloading the assignment operator Memory management Different
categories of memory Constructors, destructors and copy constructors
Reference counting Exception handling Various methods to handle
exceptions Throw, catch and try block Throwing objects Stack unwinding
Name scope management Name scope and lifetime Forward reference
Protected scope Friends Nested classes Private inheritance Name
spaces Polymorphism Polymorphic variables Virtual and non-virtual
overriding Pure virtual member functions Run-time typing information
Multiple inheritance Templates Template functions Template classes
Typedef Non-type template arguments Non-type template arguments
Standard template library — cont ainers Fundamental sequential
containers — vector, list, deque Adapted containers — stack, queue,
priority queue Ordered container — set Associative container — map
Standard template library — iterators and algorithms Iterator as a general
idea for pointers Categories of iterators Function objects, generators,
predicates Generic algorithm Stream iterators Functional programming
Installing scheme Prefix notation Defining variables and procedures Cond
and if Logical operators Constructing procedures using Lambda

Lab Content

The following programming labs are designed to cover various

aspects of the course content, providing hands-on experience and
practical understanding of C++ programming concepts, from memory
management to advanced topics like templates, polymorphism, and
functional programming: Introduction to Separate Compilation and
Encapsulation Principles: Implement a basic C++ program using separate
compilation techniques. Develop header and implementation files for a
reusable component, emphasizing encapsulation principles. Algorithm
Efficiency and Linked Data Representations: Estimate the efficiency of

an algorithm using Big-O notation. Implement singly- and doubly-linked
lists, showcasing insertion and removal of dynamic nodes. Memory
Management Techniques: Explore memory management techniques by
implementing constructors, destructors, copy constructors, and copy
assignment operators for classes that create objects pointing to dynamic
data. Operator Overloading and Exception Handling: Overload simple
arithmetic operators, prefix and postfix operators, insertion and extraction
operators, and comparison operators for a custom class. Polymorphism
and Template Concepts: Implement polymorphic variables using both
virtual and non-virtual overriding. Create template functions and classes.
STL and Iterators: Use and modify fundamental sequential containers
(vectors, lists), adapted containers (stacks, queues, priority queues) and
ordered containers (sets, multisets, maps, multimaps) from the STL.
Understand and implement different categories of iterators. Generic
Algorithms: Work with function objects, generators, and predicates in
generic STL algorithms. Advanced Concepts: Explore multiple inheritance
and private inheritance. Functional Programming: Write functional



2 CS A250: C++ Programming Language 2

programs using Racket or an equivalent func tional programming
language.

Method(s) of Instruction
* Lecture (02)
+ DE Live Online Lecture (02S)
+ DE Online Lecture (02X)
- Lab (04)
* DE Live Online Lab (04S)
+ DE Online Lab (04X)

Instructional Techniques
Lecture/discussion

Reading Assignments

Students will spend a minimum of 4 hours per week reading the textbook
and/or other reading material assigned. Students will be expected to
follow along with the exercises in the reading material.

Writing Assignments
Students will spend a minimum of 6 hours per week writing code.

Out-of-class Assignments
Students will spend a minimum of 6 hours per week completing weekly
programming assignments.

Demonstration of Critical Thinking
Written examination and laboratory exercises.

Required Writing, Problem Solving, Skills Demonstration

Successful performance of the laboratory assignments.

Eligible Disciplines

Computer science: Masters degree in computer science or computer
engineering OR bachelors degree in either of the above AND masters
degree in mathematics, cybernetics, business administration, accounting
or engineering OR bachelors degree in engineering AND masters degree
in cybernetics, engineering mathematics, or business administration OR
bachelors degree in mathematics AND masters degree in cybernetics,
engineering mathematics, or business administration OR bachelors
degree in any of the above AND a masters degree in information
science, computer information systems, or information systems OR

the equivalent. Note: Courses in the use of computer programs for
application to a particular discipline may be classified, for the minimum
qualification purposes, under the discipline of the application. Masters
degree required.

Textbooks Resources
1. Required Deitel, P, Deitel, H.. C++ How to Program: An Objects-Natural
Approach, ed. Pearson, 2023



