
CS A220: Software Engineering 1

CS A220: SOFTWARE
ENGINEERING
Item Value
Curriculum Committee Approval
Date

12/06/2023

Top Code 070600 - Computer Science
(Transfer)

Units 4 Total Units
Hours 108 Total Hours (Lecture Hours

54; Lab Hours 54)
Total Outside of Class Hours 0
Course Credit Status Credit: Degree Applicable (D)
Material Fee No
Basic Skills Not Basic Skills (N)
Repeatable No
Grading Policy Standard Letter (S),

• Pass/No Pass (B)

Course Description
Introduction to the concepts, methods, and current practice of
software engineering. Study the lifecycle of a software system. Employ
engineering methods, processes, techniques, and measurement. Use
of tools to manage software development. Project work is required to
illustrate the various elements. PREREQUISITE: CS A150; and CS A100,
CS A122, CS A131 or CS A170. Transfer Credit: CSU; UC.

Course Level Student Learning Outcome(s)
1. Apply the system development life cycle steps in designing systems

from module design through its implementation.
2. Evaluate existing systems using the software engineering process.

Course Objectives
• 1. List the different life cycles and their appropriateness in different

situations, define the basic principles of software engineering and
recall how they apply throughout the software life cycle.

• 2. Report the tradeoffs and relationships among the various activities
in the software life cycle and restate the meaning and use of a set of
basic software qualities.

• 3. Arrange interviews with customer to elicit requirements, formulate
the requirement document, and describe its structure and the
appropriate kinds of information in such a document.

• 4. Record the differences among interaction patterns of a set of basic
architectural styles, between architecture and module design, and
employ an appropriate architectural style for a particular problem.

• 5. Use provided/exported and required/imported interfaces to define
module boundaries, identify and define modules, abstract data types,
coupling, cohesion, fan-in, and fan-out in a design.

• 6. Construct a design for a nontrivial, sizable problem.
• 7. Set up a module design onto an implementation in source code,

employ existing modules and libraries in an implementation, and
construct code under a heavy deadline.

• 8. Evaluate a program for failures, apply white-box testing or black-
box testing on short pieces of code, recognize the many dimensions

of software quality assurance, inspection, and code walk-through
process.

Lecture Content
Overview Introduction FAQs about software engineering Professional
and ethical responsibility Computer-Base System Engineering
Systems and environment System modeling The system engineering
process Software Process Software process models Process
Iteration Software specification Software design and implementation
Software validation and evolution Automated process support Project
Management Project planning and scheduling Risk management
Requirements Software requirements Functional and non-functional
requirements User requirements System requirements The software
requirements document Requirements engineering process Feasibility
study Requirements elicitation and analysis Requirement validation
and management System models Context, behavioral, Data, and
Object model CASE workbenches Design Architectural Design System
structuring Control models Modular decomposition Domain-specific
architecture Distributed Systems Architectures Multiprocessor,
client-server, and distributed object architectures COBRA Objective-
Oriented Design Objectives and classes Object-oriented design process
Design evolution Design with reuse Component-based development
Application families Design Patterns User interface design User interface
design principles User interaction Information pres entation User
support Interface evolution Verification and Validation Verification and
validation Verification and validation planning Software inspection
Software testing Defect testing Integration testing Object-oriented testing
Testing workbenches Evolution Software change Program evolution
dynamics Software maintenance Architectural evolution Configuration
management Configuration management planning Change management
Versions and release management System building CASE tools for
configuration management

Method(s) of Instruction
• Lecture (02)
• DE Live Online Lecture (02S)
• DE Online Lecture (02X)
• Lab (04)
• DE Live Online Lab (04S)
• DE Online Lab (04X)

Instructional Techniques
Lecture Problem solving PowerPoint presentations Discussion

Reading Assignments
Students will spend a minimum of 4 hours per week reading the textbook
and/or other reading material assigned.

Writing Assignments
Students will spend a minimum of 6 hours weekly completing
programming assignments and project presentations.

Out-of-class Assignments
Students will spend a minimum of 6 hours per week completing weekly
programming assignments.

2 CS A220: Software Engineering

Demonstration of Critical Thinking
Tests and quizzes Homework assignments In-class assignments
Software projects

Required Writing, Problem Solving, Skills Demonstration
Successful performance of the assignments and project presentations.

Eligible Disciplines
Computer science: Masters degree in computer science or computer
engineering OR bachelors degree in either of the above AND masters
degree in mathematics, cybernetics, business administration, accounting
or engineering OR bachelors degree in engineering AND masters degree
in cybernetics, engineering mathematics, or business administration OR
bachelors degree in mathematics AND masters degree in cybernetics,
engineering mathematics, or business administration OR bachelors
degree in any of the above AND a masters degree in information
science, computer information systems, or information systems OR
the equivalent. Note: Courses in the use of computer programs for
application to a particular discipline may be classified, for the minimum
qualification purposes, under the discipline of the application. Masters
degree required.

Textbooks Resources
1. Required Tsui, Frank. Essentials of Software Engineering, 5th ed.
Marietta: Jones Bartlett, 2022

