
CS A200: Data Structures 1

CS A200: DATA STRUCTURES
Item Value
Curriculum Committee Approval
Date

12/06/2023

Top Code 070600 - Computer Science
(Transfer)

Units 4 Total Units
Hours 90 Total Hours (Lecture Hours

63; Lab Hours 27)
Total Outside of Class Hours 0
Course Credit Status Credit: Degree Applicable (D)
Material Fee Yes
Basic Skills Not Basic Skills (N)
Repeatable No
Grading Policy Standard Letter (S),

• Pass/No Pass (B)

Course Description
A study of data abstraction and algorithm analysis. Data structures
include lists, stacks, queues, trees, tables, and graphs. Algorithms include
searching, sorting, pattern-matching, tree traversal, and balancing. This
is a core course for students who want to study advanced programming,
computer science, or engineering. PREREQUISITE: CS A150 and CS A250.
Transfer Credit: CSU; UC.

Course Level Student Learning Outcome(s)
1. Define the structural implementation of stacks, queues, trees, and

graphs.
2. Evaluate sorting and searching algorithms, including Merge sort,

Quick sort, and binary search.

Course Objectives
• 1. Apply object-oriented programming techniques to create abstract

data types.
• 2. Differentiate between the interface and implementation of a

data structure. Judge which implementation is better for a specific
problem.

• 3. Understand the foundation structures of lists.
• 4. Apply the concept of data abstraction to write stack and queue

implementations.
• 5. Apply different types of nonlinear data structures, such as trees

and graphs.
• 6. Explain the different type of trees (binary search trees, balance

trees and AVL trees).
• 7. Produce programs for creating, inserting, deleting, balancing,

traversing, and searching for elements in a tree both iteratively and
recursively.

• 8. Apply hashing techniques on tables.
• 9. Apply the concepts of searching and sorting to various

programming problems and compare between sorting algorithms.
• 10. Apply the concepts of recursion and how to think recursively,

distinguish between recursive and iterative solutions, and solve
problems using recursive backtracking algorithms.

• 11. Produce programs using heaps, hash-tables, and graphs.

• 12. Design and implement graph traversal algorithms
• 13. Perform basic execution analysis of an algorithm and differentiate

between basic efficiency measures.
• 14. Use dynamic memory management and allocation to construct

dynamic as well as static data structures.
• 15. Implement abstract data structures.

Lecture Content
Principles of programming and software engineering Problem solving
and software engineering What is problem solving The life cycle of
software What is a good solution Achieving modular design Abstraction
and information hiding Object-oriented design Top-down design General
design guidelines Key issues in programming Modularity Modifiability
Ease of use Fail-safe programming Style Debugging Recursion Recursive
solutions A recursive valued function A recursive “Void” function
Counting recursively Searching recursively Finding largest item in an
array Binary search Finding the kth smallest item in an array Organizing
data Towers of Hanoi Recursion and efficiency Data Abstraction Abstract
Data Types (ADT) Specifying ADTs ADT List ADT Sorted list Designing
ADT Axioms Implementing ADTs An array-based implementation
of ADT List Linked Lists Preliminaries Pointers Dynamic allocation
of arrays Pointer-based linked lists Programming with linked lists
Displaying contents of a linked list Deleting a node from a linked list
Inserting a node into a linked list Pointer-based implementation of ADT
List Comparing array-based pointer-based implementations Saving
restoring lists by using files Passing a list to a function Processing
linked lists recursively Variations of linked lists Ci rcular linked lists
Dummy-head nodes Doubly-linked lists Stacks ADT Stack Stack
applications Checking balanced braces Recognizing strings in a language
Implementation of ADT Stack Array-based implementation Pointer-
based implementation Implementation using ADT List Comparing the
implementations Application: Algebraic Expressions Evaluating postfix
expressions Converting infix into postfix Application: A search problem
Non-recursive solution Recursive solution Relationship between stack
recursion Queues ADT Queue Simple applications of ADT Queue Reading
a string of characters Recognizing palindromes Implementation of
ADT Queue Array-based implementation Pointer-based implementation
Implementation using ADT List Comparing the implementations
Summary of Position-oriented ADTs Algorithm efficiency and sorting
Measuring efficiency of an algorithm Execution time Growth rate Order
of magnitude and Big-O notation Efficiency of searching algorithms
Sorting algorithms their efficiency Selection sort Bubble sort Insertion
sort Merge-sort Quick-sort Radix sort Comparison of sorting algorithms
Trees Terminology ADT Binary Tree (BT) Traversal of a BT Possible
representation of BT Pointer-based implementation of ADT BT Efficiency
of ADT BT ADT Binary Search Tree (BST) > Algorithms for ADT Tree
Operations Pointer-based implementation of ADT BST Efficiency of ADT
BST Tree-sort Saving BST in a file General Trees Tables and Priority
Queues ADT Table Selecting an implementation Sorted array-based
implementation of ADT Table BST implementation of ADT Table ADT
Priority Queue Heaps Heap implementation of ADT Priority Queue Heap-
sort Advanced implementation of Tables Balanced Search Trees 2-3
Trees 2-3-4 Trees Red-black Trees AVL Trees Hashing Hash functions
Resolving collisions Efficiency of hashing Good hashing functions Table
traversal Data with multiple organizations Graphs Terminology Graph
ADT Implementing graphs Graph traversal Depth-first Breadth-first
Applications of graphs Topological sorting Spanning trees Minimum
spanning trees Shortest paths External methods Introduction to external

2 CS A200: Data Structures

storage Sorting data in an external file External tables Indexing Hashing
Trees Traversal Multiple indexing

Lab Content
The following programming labs are designed to help students master
the topics learned through hands-on practice using linear and nonlinear
data structures, iterative and recursive approaches, and object-oriented
programming techniques: Represent graphs using adjacency lists and
matrices, integrating Dijkstras shortest path, Kruskals minimum spanning
tree, depth-first, and breadth-first traversals. Implement a Binary Search
Tree (BST) class and extend it to include derived classes for balanced
trees such as AVL trees, red-black trees, and 2-3 trees. Represent heaps
using a dynamic array class, emphasizing their role in algorithms like
heapsort. Implement circular queues and priority queues to explore
practical applications of data structures. Write stack implementations
using linked lists and dynamic arrays. Implement hash tables, covering
hash functions, collision resolution, and the efficiency of hashing in data
retrieval. Apply sorting concepts to various programming problems,
comparing algorithms such as selection sort, insertion sort, merge sort,
quicksort, bucket sort, and radix sort. Additional lab exercises should
provide practice on all algorithms and data structures covered each
week. This includes activities like tracing code, illustrating scheduling
techniques, evaluating time complexity by analyzing the execution
of algorithms, drawing trees and graphs using different traversal and
balancing techniques.

Method(s) of Instruction
• Lecture (02)
• DE Live Online Lecture (02S)
• DE Online Lecture (02X)
• Lab (04)
• DE Live Online Lab (04S)
• DE Online Lab (04X)

Instructional Techniques
Lecture; PowerPoint presentations; problem solving exercises; discussion

Reading Assignments
Students will spend a minimum of 4 hours per week reading the textbook
and/or other reading material assigned. Students will be expected to
follow along with the exercises in the reading material.

Writing Assignments
Students will spend a minimum of 6 hours per week writing code.

Out-of-class Assignments
Students will spend a minimum of 6 hours per week completing weekly
programming assignments.

Demonstration of Critical Thinking
Written tests and quizzes; homework and in-class assignments.

Required Writing, Problem Solving, Skills Demonstration
Successful performance of the assignments and project presentations.

Eligible Disciplines
Computer science: Masters degree in computer science or computer
engineering OR bachelors degree in either of the above AND masters
degree in mathematics, cybernetics, business administration, accounting
or engineering OR bachelors degree in engineering AND masters degree

in cybernetics, engineering mathematics, or business administration OR
bachelors degree in mathematics AND masters degree in cybernetics,
engineering mathematics, or business administration OR bachelors
degree in any of the above AND a masters degree in information
science, computer information systems, or information systems OR
the equivalent. Note: Courses in the use of computer programs for
application to a particular discipline may be classified, for the minimum
qualification purposes, under the discipline of the application. Masters
degree required.

Textbooks Resources
1. Required Cormen, T.H.. Introduction to Algorithms, 4th ed. The MIT
Press, 2022

