
CS A170: Java Programming 1 1

CS A170: JAVA
PROGRAMMING 1
Item Value
Curriculum Committee Approval
Date

10/24/2018

Top Code 070600 - Computer Science
(Transfer)

Units 4 Total Units
Hours 90 Total Hours (Lecture Hours

63; Lab Hours 27)
Total Outside of Class Hours 0
Course Credit Status Credit: Degree Applicable (D)
Material Fee Yes
Basic Skills Not Basic Skills (N)
Repeatable No
Grading Policy Standard Letter (S),

• Pass/No Pass (B)

Course Description
A first Computer Science course taught using the Java programming
language. Students will build Java applications. Emphasis will be placed
on programming fundamentals such as variables, selection and loops
as well as object-oriented programming concepts including classes and
inheritance. ADVISORY: CIS A090; and CIS A100 or CIS A111. Transfer
Credit: CSU; UC. C-ID: COMP 122.C-ID: COMP 122.

Course Level Student Learning Outcome(s)
1. Create, compile, execute, and test Java applications.
2. Create programs that correctly apply object-oriented principles.
3. Implement selection structures (if/else and switch), repetition

structures (while, do/while, and for), and one- and two-dimensional
arrays.

Course Objectives
• 1. Use Java tools to create, compile and run syntactically correct

Java programs.
• 2. Demonstrate proficiency applying the fundamental concept of

sequence and input-processing-output (IPO).
• 3. Demonstrate proficiency writing programs that use logic and

selection statements.
• 4. Demonstrate proficiency using iteration and loops to process

strings and arrays.
• 5. Demonstrate proficiency in calling methods with arguments, and

defining methods and parameters of different types.
• 6. Solve accumulation, counting and other fundamental algorithms,

using the arrays and lists found in the standard Java Class Libraries.
• 7. Demonstrate the ability to read the Java Class Library

documentation, create objects using constructors, and call methods.
• 8. Demonstrate proficiency defining classes, making proper use of

encapsulation.
• 9. Apply the concept of inheritance to solve various problems

Lecture Content
Introduction to Programming Java Mechanics: edit, compile, run and
test Java programs. Computers and Memory: hardware and how data
is stored in memory Software and the CPU: types of software; how the
CPU works History of Programming: machine, assembly and high-level
languages What about Java. History of Java and why it is important.
Data and Output Java Syntax Basics: language rules for Java programs
Console Output and escape sequences Variables and Values: how to
declare variables and fill them with values Numbers: introduction to the
primitive integer and real number types Objects, Input and Processing
Interactive Programs: create programs that accept user input Processing
Data: use arithmetic operators to perform calculations Math Functions:
learn how to use functions, starting with the Math class Objects and
methods: create objects of different types. Difference between reference
types and value types. Calling accessor and mutator methods on objects
Characters, Strings and Functions Side Effects: casting and the short-
hand assignment operators Characters and Strings: the char primitive
type and the String class type Strings and Methods: use the Java API
Javadocs, start with simple String functions Parsing and Formatting:
convert between Strings and numbers and format output Procedures
and Functions Writing Procedures: learn syntax of procedures, technique
of functional decomposition Passing Parameters: write procedures
that modify behavior based on passed arguments Writing Functions:
learn to write methods that calculate and return a value Syntax Errors:
learn techniques for avoiding common compiler errors Style Rules: learn
about the conventions used for formatting Java programs Introducing
Computer Logic True False: learn how to use Javas boolean type to
compare numbers Object String Relationships: learn about different
ways to compare objects and Strings Introducing Selection: make
decisions with the if, else and conditional operators OOP Concepts:
vocabulary and principles underlying Object-Oriented Programming
More on Logic Logical Operators: combine Boolean expressions using
Javas logical operators Multiple Choice: make decisions involving
multiple outputs Using the switch statement and the conditional operator
Applying selection to data validation Learning About Loops Writing
Loops: learn a strategy for writing loops that are correct. The for Loop:
learn how to use Javas for statement to create counter-controlled loops
The while Loop: write loops that use a counter and those that test a
condition More Indefinite Loops: using do-while, managing necessary and
intentional bounds Java Jumps: using break and continue to fine-tune
a loop Loops, Arrays Files Iterators and Limits: use iterators to process
files and Strings with limit-bound loops Primitive Arrays: how to create
and initialize one-dimensional primitive arrays Arrays and Methods:
learn how arrays are stored and how to write methods to process them
Fundamental array algorithms: counting, accumulating, extreme values
Arrays and Application Arrays, Pictures and Sound: use arrays to modify
digital images and or to process sound files Partially-filled Arrays:
learn how to insert and delete elements from an array Object and 2D
Arrays: create arrays that contain rows and columns More Array Topics:
process the command-line and variable-length parameter lists User-
Defined Types Defining Fields: learn how to create new types and use
the data elements they contain Defining Methods: learn to add actions
to classes by defining instance methods Encapsulation: using private
data and writing methods that provide safe access Constructors: defining
constructors to initialize your objects private data Writing Classes: some
larger case study Bugs and Testing Scope and Static Methods: writing
class methods and implementing shared data elements Runtime Errors:
learn to recognize runtime errors, throw exceptions and use assertions
Unit Tests: learn how to create and use unit tests (JUnit framework)
Debugging: learn how to use your IDEs debugger and a debugging
strategy Inheritance and Composition Introduction to Inheritance: learn

2 CS A170: Java Programming 1

how to create new classes by extending existing classes Inheritance at
Work: practical examples of using inheritance Composite Objects: learn
the technique of combining objects to create new classes Enumerated
Types: create user-defined single-value types ArrayLists: use Javas
generic ArrayList class to process collections of elements Interfaces and
Exceptions Specification Inheritance: create and use abstract classes
with abstract methods Interface Inheritance: use pure specification by
defining and implementing interfaces Events and Interfaces: learn how to
work with event interfaces and event adaptors Inner Classes: create inner
classes and anonymous objects Handling Exceptions: learn to use try-
catch and to create your own exception types

Lab Content
1. Working with Console Programs a. Simple Console Output (using
System.out.print and println) b. Interactive Programs: Produce several
programs that receive input, process it and produce output (Examples:
FeetToMeters, CelciusToFahrenheit) c. Using Math functions: Write
IPO programs that use the functions and constants in the Math class.
Examples: CircleStats, FutureValue, PresentValue d. Formatted Output:
Write programs that print output formatted into columns, and that
control the way that numbers are presented. 2. Working with Graphical
Programs a. Graphical Output: Produce text output using graphics b.
Fonts and Colors: use different fonts and change colors c. Graphical
Shapes and Output: Write programs that draw and fill shapes. (Ex. Pie
Chart) d. Basic Animation: Create a PacMan, bouncing ball or similar
program 3. Writing Procedures and Functions a. Decompose an output
program into different procedures b. Using String Functions: Use the
functions in the String class to rearrange a sentence into its individual
words c. Writing String Functions: Write different String functions that
examine String input and return a new String. 4. Decision Making and
Selections a. Logic functions with if and if-else: Write different functions
that make use of simple selection (the if statements) b. Combining
Decisions: Write functions that use the logical operators to combine
decisions. c. Multiway Branching: Write functions that use sequential
or nested if statements to make decisions. 5. Iteration and Repetition a.
Counter-Controlled For Loops: Write functions that process Strings using
counter-controlled for loops. b. Counting and Finding: Write functions
that process Strings to count or find some value or category. c. Using
the while Loop: Write functions t hat process String and numbers using
counter-controlled while loops. d. Sentinel and flag-controlled loops:
Write functions that use different kinds of indefinite loops. e.Working with
the ArrayList class. Compare and contrast with arrays. 6. Iterators and
Processing Files a. Process a file and produce statistics (counting words,
adding numbers, etc.) 7. Processing Arrays a.Arrays and Methods: Write
functions that take, return and modify arrays. b. Arrays and Loops: Write
functions that process arrays using loops c. Arrays and the fundamental
algorithms: Write functions that calculate sums, averages, count for a
condition and find the extreme and adjacent values d. Working with 2D
arrays 8. Defining Classes a. Creating a basic class: Instance variables,
accessor and mutator methods, constructors b. Overriding methods in
the Object class: Writing toString and Equals c. Testing Classes: Writing
manual unit tests (expected and actual) 9. Inheritance, Composition
and Enumeration a. Extending a class without constructor chaining b.
Extending a class with overriding and constructor chaining

Method(s) of Instruction
• Lecture (02)
• DE Live Online Lecture (02S)
• DE Online Lecture (02X)
• Lab (04)

• DE Live Online Lab (04S)
• DE Online Lab (04X)

Instructional Techniques
Lecture Demonstration Guided in-class exercises Clicker Questions

Reading Assignments
Students will spend a minimum of 4 hours per week reading the textbook
and/or other reading material assigned. Students will be expected to
follow along with the exercises in the reading material.

Writing Assignments
Students will spend a minimum of 6 hours per week writing code.

Out-of-class Assignments
Students will spend a minimum of 6 hours per week completing weekly
programming assignments.

Demonstration of Critical Thinking
Written examinations, programming proficiency examinations, and in-
class guided exercises.

Required Writing, Problem Solving, Skills Demonstration
Written examinations, programming proficiency examinations, and in-
class guided exercises.

Eligible Disciplines
Computer science: Masters degree in computer science or computer
engineering OR bachelors degree in either of the above AND masters
degree in mathematics, cybernetics, business administration, accounting
or engineering OR bachelors degree in engineering AND masters degree
in cybernetics, engineering mathematics, or business administration OR
bachelors degree in mathematics AND masters degree in cybernetics,
engineering mathematics, or business administration OR bachelors
degree in any of the above AND a masters degree in information
science, computer information systems, or information systems OR
the equivalent. Note: Courses in the use of computer programs for
application to a particular discipline may be classified, for the minimum
qualification purposes, under the discipline of the application. Masters
degree required. Computer science: Masters degree in computer science
or computer engineering OR bachelors degree in either of the above AND
masters degree in mathematics, cybernetics, business administration,
accounting or engineering OR bachelors degree in engineering AND
masters degree in cybernetics, engineering mathematics, or business
administration OR bachelors degree in mathematics AND masters degree
in cybernetics, engineering mathematics, or business administration
OR bachelors degree in any of the above AND a masters degree in
information science, computer information systems, or information
systems OR the equivalent. Note: Courses in the use of computer
programs for application to a particular discipline may be classified,
for the minimum qualification purposes, under the discipline of the
application. Masters degree required.

Textbooks Resources
1. Required Horstmann, C.. Brief Java, Early Objects, Enhanced eText, 9th
ed. Hoboken, NJ: Wiley, 2018 2. Required Horstmann, C.. Big Java, Early
Objects, Enhanced eText, 7th ed. Hoboken, NJ: Wiley, 2018 3. Required
Horstmann, C.. Java Concepts, Late Objects, Enhance eText, 8th ed.
Hoboken NJ: Wiley, 2016

