
CS A122: Programming Concepts and Methodology 1 1

CS A122: PROGRAMMING
CONCEPTS AND
METHODOLOGY 1
Item Value
Curriculum Committee Approval
Date

11/02/2016

Top Code 070600 - Computer Science
(Transfer)

Units 3 Total Units
Hours 90 Total Hours (Lecture Hours

36; Lab Hours 54)
Total Outside of Class Hours 0
Course Credit Status Credit: Degree Applicable (D)
Material Fee No
Basic Skills Not Basic Skills (N)
Repeatable No
Grading Policy Standard Letter (S)

Course Description
Introduction to the discipline of Computer Science using a high-level
language utilizing programming and practical hands-on problem solving.
The first course for students seeking the Computer Science AS-T transfer
degree. Advisory: Computer Information Systems A090 or A100 or A111.
Transfer Credit: CSU, UC. C-ID COMP 122

Course Level Student Learning Outcome(s)
1. Students will implement different programs using each of the

following: basic computation, simple I/O, conditional and iterative
structures.

2. Students will write programs that make use of function definitions,
decomposition, parameter passing,and arrays.

Course Objectives
• I Programming Fundamentals
• I. 1. Analyze and explain the behavior of simple programs involving

the fundamental programming constructs.
• I. 2. Modify and expand short programs that use standard conditional

and iterative control structures and functions.
• I. 3. Design, implement, test, and debug a program that uses each

of the following fundamental programming constructs: basic
computation, simple I/O, standard conditional and iterative structures,
and the definition of functions.

• I. 4. Choose appropriate conditional and iteration constructs for a
given programming task.

• I. 5. Apply the techniques of structured (functional) decomposition to
break a program into smaller pieces.

• I. 6. Describe the mechanics of parameter passing.
• II Algorithms and Problem Solving
• II. 1. Discuss the importance of algorithms in the problem-solving

process.
• II. 2. Identify the necessary properties of good algorithms.
• II. 3. Create algorithms for solving simple problems.

• II. 4. Use pseudocode or a programming language to implement, test,
and debug algorithms for solving simple problems.

• II. 5. Describe strategies that are useful in debugging.
• III Overview of Programming Languages
• III. 1. Summarize the evolution of programming languages, illustrating

how this history has lead to the paradigms available today.
• III. 2. Identify at least one distinguishing characteristic for Object-

Oriented and Procedural programming.
• IV Declarations and Types
• IV. 1. Explain the value of declaration models, especially with respect

to programming-in-the-large.
• IV. 2. Identify and describe the properties of a variable, such as its

associated address, value, scope, persistence, and size.
• IV. 3. Discuss type incompatibility.
• IV. 4. Demonstrate different forms of binding, visibility, scoping and

lifetime management.
• IV. 5. Defend the importance of types and type-checking in providing

abstraction and safety.

Lecture Content
Introduction to Programming Computers and Memory: hardware
and how data is stored in memory Software and the CPU: types of
software; how the CPU works Programming Mechanics: using a
development environment Syntax Basics: analyzing your first program
Problem Solving: Algorithm Design Data and Simple Output History of
Programming: machine, assembly and high-level languages Modern
Programming Languages and Paradigms Console output with strings
and escape sequences Variables and Values: how to declare variables
and fill them with values Numbers: introduction to the integer and real
number types Objects, Input and Processing Interactive Programs:
create programs that accept user input Processing Data: use arithmetic
operators to perform calculations Math Functions: learn how to use
library functions Declarations and data types: static and dynamic
typing, casting Characters and Strings, parsing and formatted output
Problem Solving: Hand-tracing algorithms before coding Introducing
Computer Logic and Decisions True False: learn how to represent Boolean
values Decision Relationships: comparing numbers, objects and strings
Introducing Selection: make decisions with the if, else and conditional
operators Logical Operators: combine Boolean expressions using logical
operators Multiple Choice: make decisions involving multiple inputs
and outputs Problem Solving: Flowcharts and Test Cases Application:
Input Validation Loops and Repetition Writing Loops: learn a strategy
for writing loops that are correct. Counter-controlled loops: learn how
to use loops that rely on a counter Sentinel and flag-controlled loops:
learn how to wr ite indefinite loops Using do-while, managing necessary
and intentional bounds Jump statements: using break and continue
to fine-tune a loop Iterators controlled loops: use iterators to process
Files and collections Limit-controlled loops: write loops that use a limit
bound Procedures and Functions Procedural Programming; history
and concepts of structured programming Writing Procedures: learn the
syntax of procedures Passing Parameters: write procedures that modify
behavior based on passed arguments Writing Functions: learn to write
methods that calculate and return a value Syntax Errors: learn techniques
for avoiding common compiler errors Problem Solving: writing reusable
methods Problem Solving: functional decomposition and stepwise
refinement Variable scope and variable lifetime (automatic variables and
the stack) Introducing Array and Lists Lists and Arrays: how to create
and initialize one-dimensional primitive arrays Lists and Methods: learn

2 CS A122: Programming Concepts and Methodology 1

how arrays are stored and how to write methods to process them Lists
and Loops: use loops to implement common array-processing algorithms
List Algorithms: extreme values, sum/average/count, adjacent elements
Matrices: create lists that contain rows and columns Bugs and Testing
Runtime Errors: learn to recognize runtime errors, throw exceptions
and use assertions Unit Tests: learn how to create and use unit tests
(Manual and with a framework) Debugging: learn how to use your IDEs
debugger and a debugging strategy Problem Solving: Tracing Objects
Files and Exceptions Reading and Writing Text files Text Input and Output
Command Line Arguments Exception Handling Application: Handling I
nput Errors

Lab Content
Use an IDE or other tools to compile, run and test programs. Examine
and understand the way that computer memory is arranged and how
different types of data are stored. Create and test programs that: Perform
interactive Input/Processing/Output Process strings with loops or
iteration Perform decision making with selection Process arrays or lists
including common summation and extreme value algorithms. Perform
input and output on files included formatted output.

Method(s) of Instruction
• Lecture (02)
• DE Online Lecture (02X)
• Lab (04)
• DE Online Lab (04X)

Instructional Techniques
Lecture, demonstration and programming exercises.

Reading Assignments
Students will spend a minimum of 4 hours per week reading the textbook
and/or other reading material assigned. Students will be expected to
follow along with the exercises in the reading material.

Writing Assignments
Students will spend a minimum of 6 hours per week writing code.

Out-of-class Assignments
Students will spend a minimum of 6 hours per week completing weekly
programming assignments.

Demonstration of Critical Thinking
Students will demonstrate the ability to write programs that solve
different kinds of problems.

Required Writing, Problem Solving, Skills Demonstration
Students will demonstrate proficiency writing computer programs.

Eligible Disciplines
Computer science: Masters degree in computer science or computer
engineering OR bachelors degree in either of the above AND masters
degree in mathematics, cybernetics, business administration, accounting
or engineering OR bachelors degree in engineering AND masters degree
in cybernetics, engineering mathematics, or business administration OR
bachelors degree in mathematics AND masters degree in cybernetics,
engineering mathematics, or business administration OR bachelors
degree in any of the above AND a masters degree in information
science, computer information systems, or information systems OR
the equivalent. Note: Courses in the use of computer programs for

application to a particular discipline may be classified, for the minimum
qualification purposes, under the discipline of the application. Masters
degree required.

Textbooks Resources
1. Required Roberts, E.. Understanding Programming through JavaScript,
1 ed. Hoboken, NJ: Pearson, 2020

